3.2.34 \(\int \frac {x (a+b \text {ArcSin}(c x))}{(d-c^2 d x^2)^{5/2}} \, dx\) [134]

Optimal. Leaf size=119 \[ -\frac {b x}{6 c d^2 \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2}}+\frac {a+b \text {ArcSin}(c x)}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {b \sqrt {1-c^2 x^2} \tanh ^{-1}(c x)}{6 c^2 d^2 \sqrt {d-c^2 d x^2}} \]

[Out]

1/3*(a+b*arcsin(c*x))/c^2/d/(-c^2*d*x^2+d)^(3/2)-1/6*b*x/c/d^2/(-c^2*x^2+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-1/6*b*a
rctanh(c*x)*(-c^2*x^2+1)^(1/2)/c^2/d^2/(-c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {4767, 205, 212} \begin {gather*} \frac {a+b \text {ArcSin}(c x)}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {b x}{6 c d^2 \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2}}-\frac {b \sqrt {1-c^2 x^2} \tanh ^{-1}(c x)}{6 c^2 d^2 \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(5/2),x]

[Out]

-1/6*(b*x)/(c*d^2*Sqrt[1 - c^2*x^2]*Sqrt[d - c^2*d*x^2]) + (a + b*ArcSin[c*x])/(3*c^2*d*(d - c^2*d*x^2)^(3/2))
 - (b*Sqrt[1 - c^2*x^2]*ArcTanh[c*x])/(6*c^2*d^2*Sqrt[d - c^2*d*x^2])

Rule 205

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (
IntegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[
p])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \sin ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{5/2}} \, dx &=\frac {a+b \sin ^{-1}(c x)}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {\left (b \sqrt {1-c^2 x^2}\right ) \int \frac {1}{\left (1-c^2 x^2\right )^2} \, dx}{3 c d^2 \sqrt {d-c^2 d x^2}}\\ &=-\frac {b x}{6 c d^2 \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2}}+\frac {a+b \sin ^{-1}(c x)}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {\left (b \sqrt {1-c^2 x^2}\right ) \int \frac {1}{1-c^2 x^2} \, dx}{6 c d^2 \sqrt {d-c^2 d x^2}}\\ &=-\frac {b x}{6 c d^2 \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2}}+\frac {a+b \sin ^{-1}(c x)}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {b \sqrt {1-c^2 x^2} \tanh ^{-1}(c x)}{6 c^2 d^2 \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 85, normalized size = 0.71 \begin {gather*} \frac {-2 a+b c x \sqrt {1-c^2 x^2}-2 b \text {ArcSin}(c x)+b \left (1-c^2 x^2\right )^{3/2} \tanh ^{-1}(c x)}{6 c^2 d^2 \left (-1+c^2 x^2\right ) \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(5/2),x]

[Out]

(-2*a + b*c*x*Sqrt[1 - c^2*x^2] - 2*b*ArcSin[c*x] + b*(1 - c^2*x^2)^(3/2)*ArcTanh[c*x])/(6*c^2*d^2*(-1 + c^2*x
^2)*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.13, size = 259, normalized size = 2.18

method result size
default \(\frac {a}{3 c^{2} d \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, x}{6 d^{3} \left (c^{4} x^{4}-2 c^{2} x^{2}+1\right ) c}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )}{3 d^{3} \left (c^{4} x^{4}-2 c^{2} x^{2}+1\right ) c^{2}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right )}{6 c^{2} d^{3} \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right )}{6 c^{2} d^{3} \left (c^{2} x^{2}-1\right )}\) \(259\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/3*a/c^2/d/(-c^2*d*x^2+d)^(3/2)-1/6*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(c^4*x^4-2*c^2*x^2+1)/c*(-c^2*x^2+1)^(1/2)*x
+1/3*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(c^4*x^4-2*c^2*x^2+1)/c^2*arcsin(c*x)-1/6*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2
+1)^(1/2)/c^2/d^3/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)-I)+1/6*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c
^2/d^3/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)+I)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

b*integrate(x*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))/((c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2)*sqrt(c*x + 1)*sq
rt(-c*x + 1)), x)/sqrt(d) + 1/3*a/((-c^2*d*x^2 + d)^(3/2)*c^2*d)

________________________________________________________________________________________

Fricas [A]
time = 3.33, size = 374, normalized size = 3.14 \begin {gather*} \left [-\frac {4 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} b c x - {\left (b c^{4} x^{4} - 2 \, b c^{2} x^{2} + b\right )} \sqrt {d} \log \left (-\frac {c^{6} d x^{6} + 5 \, c^{4} d x^{4} - 5 \, c^{2} d x^{2} + 4 \, {\left (c^{3} x^{3} + c x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} \sqrt {d} - d}{c^{6} x^{6} - 3 \, c^{4} x^{4} + 3 \, c^{2} x^{2} - 1}\right ) - 8 \, \sqrt {-c^{2} d x^{2} + d} {\left (b \arcsin \left (c x\right ) + a\right )}}{24 \, {\left (c^{6} d^{3} x^{4} - 2 \, c^{4} d^{3} x^{2} + c^{2} d^{3}\right )}}, -\frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} b c x + {\left (b c^{4} x^{4} - 2 \, b c^{2} x^{2} + b\right )} \sqrt {-d} \arctan \left (\frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} c \sqrt {-d} x}{c^{4} d x^{4} - d}\right ) - 4 \, \sqrt {-c^{2} d x^{2} + d} {\left (b \arcsin \left (c x\right ) + a\right )}}{12 \, {\left (c^{6} d^{3} x^{4} - 2 \, c^{4} d^{3} x^{2} + c^{2} d^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

[-1/24*(4*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1)*b*c*x - (b*c^4*x^4 - 2*b*c^2*x^2 + b)*sqrt(d)*log(-(c^6*d*x^
6 + 5*c^4*d*x^4 - 5*c^2*d*x^2 + 4*(c^3*x^3 + c*x)*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1)*sqrt(d) - d)/(c^6*x^
6 - 3*c^4*x^4 + 3*c^2*x^2 - 1)) - 8*sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a))/(c^6*d^3*x^4 - 2*c^4*d^3*x^2 + c
^2*d^3), -1/12*(2*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1)*b*c*x + (b*c^4*x^4 - 2*b*c^2*x^2 + b)*sqrt(-d)*arcta
n(2*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1)*c*sqrt(-d)*x/(c^4*d*x^4 - d)) - 4*sqrt(-c^2*d*x^2 + d)*(b*arcsin(c
*x) + a))/(c^6*d^3*x^4 - 2*c^4*d^3*x^2 + c^2*d^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x \left (a + b \operatorname {asin}{\left (c x \right )}\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*asin(c*x))/(-c**2*d*x**2+d)**(5/2),x)

[Out]

Integral(x*(a + b*asin(c*x))/(-d*(c*x - 1)*(c*x + 1))**(5/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)*x/(-c^2*d*x^2 + d)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{{\left (d-c^2\,d\,x^2\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(5/2),x)

[Out]

int((x*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(5/2), x)

________________________________________________________________________________________